ମୁଖ୍ୟ ସୂଚୀ ଦେଖିବେ

ମେସିନ ଲର୍ଣିଂ

ଯାନ୍ତ୍ରିକ ଶିକ୍ଷ୍ୟା

ମେସିନ ଲର୍ଣିଂ ହେଉଛି ଆର୍ଟିଫିସିଆଲ ଇଣ୍ଟେଲିଜେନ୍ସର ଏକ ବିଭାଗ । ଏହି ବିଭାଗରେ ମୁଖ୍ୟତଃ ପରିସଂଖ୍ୟାନ (ସାଂଖିକ ତଥ୍ୟ) ପଦ୍ଧତି ଉପଯୋଗ କରି କମ୍ପ୍ୟୁଟରକୁ ଆପେ ଆପେ ଶିଖିବାକୁ କୁହାଯାଇଥାଏ । ଏହି ପଦ୍ଧତିରେ ପ୍ରାୟତଃ ବହୁତଗୁଡ଼ିଏ ତଥ୍ୟର ଆବଶ୍ୟକ ରହିଥାଏ ।

ଆର୍ଟିଫିସିଆଲ ଇଣ୍ଟେଲିଜେନ୍ସ
ଗୁରୁତ୍ବପୂର୍ଣ ଲକ୍ଷ୍ୟଗୁଡିକ
ନଲେଜ ରିଜନିଂ
ପ୍ଲାନିଂ
ମେସିନ ଲର୍ଣିଂ
ନ୍ୟାଚୁରାଲ ଲାଙ୍ଗୁଏଜ ପ୍ରୋସେସିଂ
କମ୍ପ୍ୟୁଟର ଭିଜନ
ରୋବୋଟିକ୍ସ
ଆର୍ଟିଫିସିଆଲ ଜେନେରାଲ ଇଣ୍ଟେଲିଜେନ୍ସ
ପଦ୍ଧତିଗୁଡିକ
ସିମ୍ବଲିକ
ଡିପ ଲର୍ଣିଂ
ବାୟେସିଆନ ନେଟୱର୍କ
ଏଭୋଲ୍ଯୁସନାରୀ ଆଲଗୋରିଦମ
ଫିଲୋସଫି
ଏଥିକ୍ସ
ବଞ୍ଚିରହିବାର ଆଶଙ୍କା
ଟ୍ଯୁରିଙ୍ଗ ପରୀକ୍ଷା
ଚୀନ ଘର
ବନ୍ଧୁତ୍ବପୂର୍ଣ ଏଆଇ
ଇତିହାସ
ଘଟଣାବଳୀ
ପ୍ରଗତି
ଏଆଇ ଶୀତ
ପ୍ରଯୁକ୍ତି ବିଦ୍ୟା
ପ୍ରୟୋଗ
ପ୍ରକଳ୍ପ
ପ୍ରୋଗ୍ରାମିଂ ଭାଷା
ଗ୍ଲୋସରି
ଗ୍ଲୋସରି


୧୯୫୯ ମସିହାରେ ଆର୍ଥର ସାମୁଏଲ ନାମକ ଜଣେ ବ୍ୟକ୍ତି ଏହି ନାମ, ମେସିନ ଲର୍ଣିଂ ବ୍ୟବହାର କରିବା ଆରମ୍ଭ କରିଥିଲେ । ମେସିନ ଲର୍ଣିଂ ଆଲଗୋରିଦମର ତିଆରି କୌଶଳକୁ ବିଶ୍ଳେଷଣ କରି ଦିଆଯାଇଥିବା ତଥ୍ୟ ଅନୁସାରେ ବିଭିନ୍ନ ପ୍ରକାରର ଆକଳନ କରିଥାଏ । ମେସିନ ଲର୍ଣିଂର କେତେକ ବ୍ୟବହାର ହେଲା ଇମେଲରେ ସ୍ପାମ ରୋକିବା, ଅପ୍ଟିକାଲ କ୍ୟାରକ୍ଟର ରେକଗନୀସନ ଏବଂ କଂପୁଟର ଭିଜନ ।

ଅବଲୋକନସମ୍ପାଦନ କରନ୍ତୁ

ମେସିନ ଲର୍ଣିଂ କାମଗୁଡ଼ିକସମ୍ପାଦନ କରନ୍ତୁ

ମେସିନ ଲର୍ଣିଂ କାମଗୁଡ଼ିକୁ ଦିଆଯାଉଥିବା ତଥ୍ୟର ମତାମତକୁ ନଜରରେ ରଖି ମୋଟାମୋଟି ଭାବେ ଦୁଇ ଭାବରେ ବିଭକ୍ତ କରାଯାଇଛି।[୧][୨][୩][୪]

  1. ସୁପରଭାଇଜଡ ଲର୍ଣିଂ (ପର୍ଯ୍ୟାବେକ୍ଷିତ ଶିକ୍ଷା)
  2. ଅନସୁପରଭାଇଜଡ ଲର୍ଣିଂ (ଅପର୍ଯ୍ୟାବେକ୍ଷିତ ଶିକ୍ଷା): ବିନା କୌଣସି ଚିନ୍ହିତ ତଥ୍ୟ ଦେଇ ଯଦି କମ୍ପ୍ୟୁଟରକୁ ଦିଆଯାଇଥିବା ତଥ୍ୟର ପ୍ରକାର ବା ଚିହ୍ନ ଜାଣିବାକୁ କୁହାଯାଏ ତାହା ଏହି ବିଭାଗରେ ଆସିବ ।[୫]

ସୁପରଭାଇଜଡ ଲର୍ଣିଂରେ କମ୍ପ୍ୟୁଟରକୁ ଦରକାରୀ ତଥ୍ୟ ନିବେଶ ହେବା ସହିତ ଆଶାକରଯାଉଥିବା ଫଳାଫଳକୁ ମଧ୍ୟ ଦିଆଯାଇଥାଏ । ପରେ ଏହି ତଥ୍ୟ ଉପଯୋଗ କରି କମ୍ପ୍ୟୁଟର ଭବିଷ୍ୟତରେ, ପୂର୍ବରୁ ନଦେଖିଥିବା ତଥ୍ୟରେ ଆମକୁ ଆବଶ୍ୟକୀୟ ଫଳ ଦେଇପାରିବ । ସୁପରଭାଇଜଡ ଲର୍ଣିଂକୁ ଆହୁରି ଅନେକ ଛୋଟ ବିଭାଗଗୁଡ଼ିକରେ ବିଭକ୍ତ କରିହେବ ଯେପରିକି:

  1. ସେମି-ସୁପରଭାଇଜଡ ଲର୍ଣିଂ: ଏଥିରେ କମ୍ପ୍ୟୁଟରକୁ ଆଂଶିକ ତଥ୍ୟ ଦିଆଯାଇଥାଏ ।
  2. ଆକ୍ଟିଭ ଲର୍ଣିଂ : କମ୍ପ୍ୟୁଟର କିଛିନିର୍ଦ୍ଧିଷ୍ଟ ତଥ୍ୟନିମିତ୍ତ ନିଜେ ଇଣ୍ଟରନେଟରୁ ବା ଅନ୍ୟ କୌଣସି ଡାଟାବେସରୁ ତଥ୍ୟ ସଂଗ୍ରହକରି ଚିନ୍ହିତ କରିଥାଏ ।
  3. ରିଏନ୍ଫୋର୍ସମେଣ୍ଟ ଲର୍ଣିଂ : କମ୍ପ୍ୟୁଟରକୁ କିଛି ତଥ୍ୟ ଆରମ୍ଭରୁ ମିଳେ କିନ୍ତୁ ଅଧିକାଂଶ ତଥ୍ୟ କମ୍ପ୍ୟୁଟରକୁ ଦଣ୍ଡ ବା ପୁରସ୍କାର ଆକାରରେ ଏହାର ପ୍ରତି ନିର୍ଣ୍ଣୟପରେ ମିଳିଥାଏ । ସ୍ୱୟଂଚାଳିତ ଗାଡ଼ିରେ ମୁଖ୍ୟତଃ ଏହାକୁ ବ୍ୟବହାର କରାଯାଇଥାଏ ।

ସିଦ୍ଧାନ୍ତସମ୍ପାଦନ କରନ୍ତୁ

ଗୋଟିଏ ଶିକ୍ଷାବିତର ମୂଳ ଲକ୍ଷ୍ୟ ହେଉଛି ଅତୀତରେ ଘଟିଥିବା ଘଟଣାଗୁଡ଼ିକୁ ଦୃଷ୍ଟିରେ ରଖି ସେଥିରୁ ଶିଖିବା ଏବଂ ସେହି ଶିକ୍ଷାକୁ ଉପଯୋଗକରି ଭବିଷ୍ୟତରେ ଉପୁଜିବାକୁଥିବା ପରିସ୍ଥିତିରେ ସଠିକ ନିର୍ଣ୍ଣୟ ନେବା । କୌଣସି ଏକ ପର୍ଯ୍ୟାବେକ୍ଷିତ ମଡେଲକୁ ପ୍ରଥମେ ଚିନ୍ହିତ ତଥ୍ୟଦ୍ୱାରା ତାଲିମ ଦିଆଯାଇଥାଏ । ଯେପରି ଏକ ଶିଶୁକୁ ପ୍ରଥମେ ଶିଖେଇବାକୁ ପଡ଼େ ନିଆଁରେ ହାତ ଦେବ ନାହିଁ ଇତ୍ୟାଦି ସେହିପରି କମ୍ପ୍ୟୁଟରକୁ ଶିଖେଇବାକୁ ପଡ଼ିଥାଏ ।

ସୁପରଭାଇଜଡ ଲର୍ଣିଂସମ୍ପାଦନ କରନ୍ତୁ

ସୁପରଭାଇଜଡ ଲର୍ଣିଂରେ ବିଷୟରେ ଅଧିକ ଜାଣିବା ପୂର୍ବରୁ ମନୁଷ୍ୟର ଦୁଇଟି ମୁଖ୍ୟ ସମସ୍ୟା ବିଷୟରେ ଜାଣିବା ଜରୁରୀ । ମୁଖ୍ୟ ମାନବ ସମସ୍ୟାଗୁଡ଼ିକୁ ମୌଳିକରୂପେ ଦୁଇ ଭାଗରେ ବିଭକ୍ତ କରାହୋଇଛି, ସେଗୁଡ଼ିକ ହେଲା କ୍ଲାସିଫିକେସନ ଏବଂ ରିଗ୍ରେସନ[୬][୭][୮]

କ୍ଲାସିଫିକେସନ୍ସମ୍ପାଦନ କରନ୍ତୁ

କ୍ଲାସିଫିକେସନ୍ ଅର୍ଥାତ ବର୍ଗୀକରଣ ହେଉଛି ସେହି ସମସ୍ୟାଗୁଡ଼ିକ ଯାହାକୁ ଆମେ ଏକ ନିର୍ଦ୍ଧିଷ୍ଟ ପ୍ରକାରର ଶ୍ରେଣୀରେ ବିଭକ୍ତ କରାଯାଇପାରୁ । କିଛି ବର୍ଗୀକରଣ ସମସ୍ୟାର ଉଦାହରଣ ନିମ୍ନରେ ଦିଆଗଲା ।

  • ଇ-ମେଲଗୁଡ଼ିକୁ ନେଇ ସେଥିରୁ ଭଲ ଏବଂ ଖରାପ ଇ-ମେଲ ବାହାର କରିବା ।
  • ମନୁଷ୍ୟମାନଙ୍କର ଏକ ଜିନିଷ ଉପରେ ମତାମତନେଇ ସେଥିରୁ ଭାବ ଉଦ୍ଧାରଣ କରିବା, ଯେପରିକି ଭଲ, ଅତି ଭଲ, ଚଳିବ, ଖରାପ ଏବଂ ଅତି ଖରାପ । ଏହାକୁ ସେଣ୍ଟିମେଣ୍ଟ୍ ଆନାଲିସିସ କୁହାଯାଇଥାଏ ।
  • ପୁଞ୍ଜି ବଜାରରେ କୌଣସି ଏକ ସେୟାରର ମୂଲ୍ୟ ବଢିବ ବା କମିବ ।

ନିମ୍ନରେ କ୍ଲାସିଫିକେସନର କିଛି ଆଲଗୋରିଦମ ଲେଖାଯାଇଛି ।[୭]


ରିଗ୍ରେସନ୍ସମ୍ପାଦନ କରନ୍ତୁ

ରିଗ୍ରେସନ୍ ବା ପ୍ରତିପଗମନ ହେଉଛି ସେହି ସମସ୍ୟାଗୁଡ଼ିକ ଯାହାକୁ ଆମେ ଏକ ପୂର୍ବନିର୍ଦ୍ଧିଷ୍ଟ ଶ୍ରେଣୀମାନଙ୍କରେ ବର୍ଗୀକରଣ କରିପାରିବାନି । ଦିଆଯାଇଥିବା କିଛି ତଥ୍ୟରେ ଫଳର ମୂଲ୍ୟ କିଛି ମଧ୍ୟ ହୋଇପାରେ ।

ନିମ୍ନରେ ରିଗ୍ରେସନ୍ର କିଛି ଆଲଗୋରିଦମ ଲେଖାଯାଇଛି ।[୭]

  • ଲିନିୟର ରିଗ୍ରେସନ୍
  • ରିଗ୍ରେସନ୍ ଟ୍ରିଜ୍
  • ସପୋର୍ଟ ଭେକ୍ଟର୍ ରିଗ୍ରେସନ୍

ଅନସୁପରଭାଇଜଡ ଲର୍ଣିଂସମ୍ପାଦନ କରନ୍ତୁ

ଅନସୁପରଭାଇଜଡ ଲର୍ଣିଂରେ ଥିବା ସମସ୍ୟାଗୁଡ଼ିକୁ ମୁଖ୍ୟତଃ ଦୁଇ ଭାଗରେ ବିଭକ୍ତ କରାଯାଇଛି। କ୍ଲଷ୍ଟରିଂ ଏବଂ ଆସୋସିଏସନ୍ ହେଉଛି ଏହି ଦୁଇଟି ପ୍ରମୁଖ ସମସ୍ୟା ।[୯][୧୦]

କ୍ଲଷ୍ଟରିଂସମ୍ପାଦନ କରନ୍ତୁ

ଦିଆଯାଇଥିବା ଅଚିନ୍ହିତ ତଥ୍ୟରୁ କେଉଁ ତଥ୍ୟଗୁଡ଼ିକ ପାଖାପାଖି ମିସୁଛନ୍ତି ଏବଂ କେଉଁଗୁଡ଼ିକ ଅନ୍ୟମାନଙ୍କଠାରୁ ପ୍ରାୟ ଅଲଗା ତାହା ଜାଣିବା ହେଉଛି କ୍ଲଷ୍ଟରିଂ। ଯେହେତୁ ଏହା ଅନସୁପରଭାଇଜଡ ଲର୍ଣିଂରେ ଯାଉଅଛି ତେଣୁ ମେସିନକୁ କିଛି ପୂର୍ବରୁ ତଥ୍ୟର ଶ୍ରେଣୀ ଦେବା ଆବଶ୍ୟକ ନୁହେଁ, କେବଳ ତଥ୍ୟ ଦିଅନ୍ତୁ ଯନ୍ତ୍ର ଆପେ ଆପେ ସେଗୁଡ଼ିକୁ ଅଲଗା ଅଲଗା ଶ୍ରେଣୀ କରି ରଖିଦେବ । ସେହି ଶ୍ରେଣୀରୁ କେଉଁ ଶ୍ରେଣୀର ନାମ କଣ ଦିଆଯିବ ତାହାକୁ ମନୁଷ୍ୟକୁ ବିଚାର କରିବାକୁ ପଡ଼େ ।

କ୍ଲଷ୍ଟରିଂର କିଛି ଆଲଗୋରିଦମ ନିମ୍ନରେ ଦର୍ଶାଯାଇଛି ।[୧୧]

  • କେ-ମିନ୍ସ
  • ହାଇରାରକିକାଲ୍
  • ଏକ୍ସପେକ୍ଟେସନ୍ ମ୍ୟାକ୍ସିମାଇଜେସନ୍

କ୍ଲଷ୍ଟରିଂ ଏବଂ କ୍ଲାସିଫିକେସନ୍ ମଧ୍ୟରେ ଥିବା ତଫାତତ୍କୁ ନିମ୍ନରେ ଦର୍ଶାଯାଇଛି ।[୧୨][୧୩]

କ୍ଲାସିଫିକେସନ୍ ଏବଂ କ୍ଲଷ୍ଟରିଂ ମଧ୍ୟରେ ଥିବା ତଫାତ୍
ମାନଦଣ୍ଡ କ୍ଲାସିଫିକେସନ୍ କ୍ଲଷ୍ଟରିଂ
ଶ୍ରେଣୀଯୁକ୍ତ ତଥ୍ୟ ଆବଶ୍ୟକ ଆବଶ୍ୟକ ଅନାବଶ୍ୟକ
ମେସିନ ଲର୍ଣିଂ ପ୍ରକାର ସୁପରଭାଇଜଡ ଲର୍ଣିଂ ଅନସୁପରଭାଇଜଡ ଲର୍ଣିଂ
ଆଲଗୋରିଦମ ଡିସିସନ ଟ୍ରି, ଲଜିସ୍ଟିକ୍ ରିଗ୍ରେସନ୍ ଇତ୍ୟାଦି କେ-ମିନ୍ସ, ଏକ୍ସପେକ୍ଟେସନ୍ ମ୍ୟାକ୍ସିମାଇଜେସନ୍ ଇତ୍ୟାଦି

ଆସୋସିଏସନ୍ସମ୍ପାଦନ କରନ୍ତୁ

ବିନା କୌଣସି ଚିନ୍ହିତ ତଥ୍ୟରେ, ବଡ଼ ବଡ଼ ଡାଟାବେସରେ ତଥ୍ୟଗୁଡ଼ିକ ମଧ୍ୟରେ ସମ୍ପର୍କ ନିର୍ଦ୍ଧାରଣ କରିବାର ପ୍ରକ୍ରିୟାକୁ ଆସୋସିଏସନ୍ କୁହାଯାଇଥାଏ ।[୧୩]

ବିଭିନ୍ନ ଆଲଗୋରିଦମସମ୍ପାଦନ କରନ୍ତୁ

ନିମ୍ନରେ କିଛି ଆଲଗୋରିଦମ ଦିଆଗଲା ଯାହାଦ୍ୱାରା ଆମେ ମେସିନ ଲର୍ଣିଂ କରିପାରୁ ।[୧୪][୧୫] ତନ୍ମଧ୍ୟରୁ କିଛି ମୁଖ୍ୟ ଆଲଗୋରିଦମ ଉପରେ ତଳେ ବିସ୍ତୃତ ଭାବେ ଲେଖାହୋଇଛି ।

  • ଡିସିସନ ଟ୍ରି ଲର୍ଣିଂ
  • ଆସୋସିଏସନ ରୁଲ ଲର୍ଣିଂ
  • ଆର୍ଟିଫିସିଆଲ ନ୍ୟୁରାଲ ନେଟୱର୍କ
  • ଇଣ୍ଡକ୍ତିଭ ଲଜିକ ପ୍ରୋଗ୍ରାମିଂ
  • ସପୋର୍ଟ ଭେକ୍ଟର ମେସିନ
  • କ୍ଲଷ୍ଟରିଂ
  • ବେଏସିଆନ ନେଟୱର୍କସ
  • ରିଏନ୍ଫୋର୍ସମେଣ୍ଟ ଲର୍ଣିଂ
  • ରିପ୍ରେଜେଣ୍ଟେସନ ଲର୍ଣିଂ
  • ସିମିଲାରିଟି ଏବଂ ମେଟ୍ରିକ ଲର୍ଣିଂ
  • ସ୍ପାର୍ଶ ଡିକ୍ସନାରି ଲର୍ଣିଂ
  • ଜେନେଟିକ ଆଲଗୋରିଦମ
  • ନିୟମଯୁକ୍ତ ମେସିନ ଲର୍ଣିଂ
  • ଫିଚର ସିଲେକ୍ସନ ପ୍ରଣାଳି

ଆର୍ଟିଫିସିଆଲ ନ୍ୟୁରାଲ ନେଟୱର୍କସମ୍ପାଦନ କରନ୍ତୁ

ଆର୍ଟିଫିସିଆଲ ନ୍ୟୁରାଲ ନେଟୱର୍କ ବା କୁତ୍ରିମ ମସ୍ତିଷ୍କ ଜାଲ ହେଉଛି ଏକ କୁତ୍ରିମ ମସ୍ତିଷ୍କ ଯାହା ମନୁଷ୍ୟର ମସ୍ତିଷ୍କର ଅନୁସରଣ କରି ତିଆରି କରାହୋଇଛି । ଏହି ପ୍ରକାରର ଆଲଗୋରିଦମ ନିଜେ ନିଜେ ଦିଆଯାଇଥିବା ଚିନ୍ହିତ ତଥ୍ୟରୁ ଶିଖିଥାଏ, ଏହାକୁ ପ୍ରୋଗ୍ରାମ ବା ନିୟମ ଦେଇ ଶିଖେଇବାକୁ ପଡ଼ିନଥାଏ । ଡିପ୍ ଲର୍ଣିଂ ଏହାର ଅନ୍ତର୍ଗତ ।

ଡିସିସନ ଟ୍ରି ଲର୍ଣିଂସମ୍ପାଦନ କରନ୍ତୁ

 
ହସ୍ତଦ୍ୱାରା ଅଙ୍କିତ ଏକ ଡିସିସନ ଟ୍ରି

ଏହା ହେଉଛି ଏକ ନିର୍ଣ୍ଣୟ ନେବା ପ୍ରଣାଳୀ ଯାହାକି ଏକ ଗଛର ଆକୃତି ଭଳି ନିଜର ଆଲଗୋରିଦମକୁ ଦର୍ଶାଇଥାଏ । ସାଧାରଣ ଏକ ଫ୍ଲୋ ଚାର୍ଟ ପରି ଏହାକୁ କଳନା କରାଯାଇପାରେ । ଯନ୍ତ୍ରକୁ ନିର୍ଣ୍ଣୟ ନେବାରେ ଯେବେ ଅସୁବିଧା ହୁଏ, ଏହା ସାହାର୍ଯ୍ୟରେ ସୁବିଧା ହୋଇପାରିଥାଏ ।

ଏହି ପ୍ରକାର ଆଲଗୋରିଦମ ମେସିନ ଲର୍ଣିଂର ଉଭୟ କ୍ଲାସିଫିକେସନ୍ ଏବଂ ରିଗ୍ରେସନ୍ ସମସ୍ୟାବେଳେ ବ୍ୟବହାର ହୋଇପାରେ । ଏହି ପ୍ରକ୍ରିୟା ମେସିନ ଲର୍ଣିଂରେ ବହୁଳ ଭାବରେ ଉପଯୋଗ କରାଯାଇଥାଏ ।

ସପୋର୍ଟ ଭେକ୍ଟର ମେସିନସମ୍ପାଦନ କରନ୍ତୁ

 
ଟେବୁଲରେ ଥିବା ପେଣ୍ଡୁଗୁଡ଼ିକ
 
ଅଧିକା ଆୟାମ ବିଶିଷ୍ଟ ଏସ.ଭି.ଏମ.

ସପୋର୍ଟ ଭେକ୍ଟର ମେସିନ ବୋଧହୁଏ ସବୁଠାରୁ ଅଧିକ ପ୍ରଚଳିତ ମେସିନ ଲର୍ଣିଂ ଆଲଗୋରିଦମ । ୧୯୯୦ ମସିହାରେ ଯେବେ ପ୍ରଥମେ ଏହା ପ୍ରକାଶ ପାଇଥିଲେ, ସେତେବେଳେ ଏହା ବହୁତ ହଇଚଇ କରିଦେଇଥିଲା । ସମମସ୍ତ ବିଭାଜନ/କ୍ଲାସିଫିକେସନ କାମ ନିମିତ୍ତ ଏହାକୁ ବ୍ୟବହାର କରାଯାଉଥିଲା । ଏହି ଆଲଜିରିଦମଟି କଣ ଏବଂ କିପରି ଏହାକୁ ବ୍ୟବହାର କରାଯାଏ ନିମ୍ନରେ ଦର୍ଶାଯାଇଛି ।[୧୬]

  • ଧରନ୍ତୁ ଗୋଟିଏ ଟେବୁଲ ଉପରେ କିଛି ପେଣ୍ଡୁ ଅଛି । ତନ୍ମଧ୍ୟରୁ କିଛି ନୀଳ ଏବଂ କିଛି ସବୁଜ ରଙ୍ଗର ଅଟେ । ଆମକୁ ସେହି ପେଣ୍ଡୁଗୁଡିକ ମଧ୍ୟରେ ଏକ ବାଡ଼ି ରଖି ସେମାନଙ୍କୁ ଅଲଗା କରିବାର ଅଛି (କ୍ଲାସିଫିକେସନ ସମସ୍ୟା ) ।
  • ପ୍ରଥମେ ପେଣ୍ଡୁଗୁଡ଼ିକ ଅଲଗା ଅଲଗା ଥିବାରୁ ଆମକୁ ମଝିରେ ବାଡ଼ି ରଖିବାରେ କୌଣସି ଅସୁବିଧା ହେଲାନାହିଁ । ଆମେ ଏଭଳି ବାଡ଼ିଟି ରଖିବା ଯେପରି ଉଭୟ ପାର୍ଶ୍ୱରୁ ସର୍ବାଧିକ ଛାଡ଼ି ଛାଡ଼ି ଏହା ରହିବ (Maximized Separation) ।
  • ଯେଉଁ ପେଣ୍ଡୁଗୁଡ଼ିକ ବାଡ଼ିଟିର ସବୁଠୁ ପାଖରେ ସେହିଗୁଡ଼ିକହିଁ ପରବର୍ତ୍ତୀ ପେଣ୍ଡୁ ଆସିଲେ କେଉଁ ବିଭାଗରେ ରଖାଯିବ ସ୍ଥିର କରିଥାନ୍ତି । ଦୂରରେ ଥିବା ପେଣ୍ଡୁଗୁଡିକ ଏତେ ପ୍ରଭାବ ଦିଅନ୍ତି ନାହିଁ । ଏହି ବାଡ଼ି ପାଖରେ ଥିବା ପେଣ୍ଡୁଗୁଡିକୁ ସପୋର୍ଟ ଭେକ୍ଟର କୁହାଯାଇଥାଏ ।
  • ହଠାତ ଗୋଟିଏ ଦୁଷ୍ଟ ପିଲାଟିଏ ଆସିଲା ଏବଂ ସମସ୍ତ ପେଣ୍ଡୁଗୁଡିକୁ ଏପଟ ସେପଟ କରିଦେଇଗଲା । ପରେ ଦେଖିଲାବେଳକୁ ଜଣା ପଡିଲା ସେ ସବୁ ନୀଳ ରଙ୍ଗର ପେଣ୍ଡୁଗୁଡିକୁ ଟେବୁଲ ମଝିରେ ଏବଂ ବାକି ସବୁ ପେଣ୍ଡୁଗୁଡିକୁ ଏହି ନୀଳ ପେଣ୍ଡୁ ବାହାରେ ଟେବୁଲ ସାରା ଖେଳେଇଦେଇଛି ।
  • ବର୍ତ୍ତମାନ ଆମେ ଏକ ବାଡ଼ିଦ୍ୱାରା ପେଣ୍ଡୁଗୁଡିକୁ ଅଲଗା କରିବା ଅସମ୍ଭବ ।
  • ଏବେ ଆମକୁ ୨ଡିରୁ ୩ଡି ଆସିବାକୁ ପଡିବ । ଟେବୁଲରେ ଥିବା ସମସ୍ତ ପେଣ୍ଡୁଗୁଡିକୁ ଉପରକୁ ଏକାସାଙ୍ଗରେ ଫୋପାଡ଼ନ୍ତୁ । ଠିକ ଯେତେବେଳେ ସମସ୍ତେ ଉପରେ ଥିବେ, ଆମେ ଗୋଟିଏ ବାଡ଼ି ବଦଳରେ ଗୋଟିଏ କାଗଜ ନେଇ ଏହି ଦୁଇ ପ୍ରକାରର ପେଣ୍ଡୁକୁ ଅଲଗା କରିପାରିବା । ଏହାକୁ କର୍ନେଲ ଟ୍ରିକ କୁହାଯାଇଥାଏ ।[୧୭]
  • ଏଠାରେ ପେଣ୍ଡୁଗୁଡିକ ହେଉଛନ୍ତି ତଥ୍ୟ । ବାଡ଼ି ଏବଂ କାଗଜ (ହାଇପରପ୍ଲେନ) ହେଉଛି କ୍ଲାସିଫାୟାର, ସବୁଠାରୁ ଅଧିକ ଛାଡ଼ିଛାଡ଼ି ଥିବା ଜାଗାକୁ ଟ୍ରିକ ଅପଟିମାଇଜେସନ କୁହାଯାଇଥାଏ ।


ଫିଚର ସିଲେକ୍ସନ ପ୍ରଣାଳିସମ୍ପାଦନ କରନ୍ତୁ

ତାଲିମ ସମୟରେ ଇନପୁଟ ତଥ୍ୟକୁ ଭଲଭାବରେ କାମରେ ଆସିବା ଭଳି ଦର୍ଶାଇବାରେ ଅନେକ ପ୍ରକାରର ଆଲଗୋରିଦମ ଭିନ୍ନ ଭିନ୍ନ ଉପାୟରେ ଚେଷ୍ଟା କରିଥାନ୍ତି ।[୧୮][୧୯] ପୁରାତନ ଉଦାହରଣଗୁଡ଼ିକ ହେଲା ପ୍ରିନ୍ସିପାଲ କାମ୍ପୋନେଣ୍ଟ ଆନାଲିସିସ ଏବଂ କ୍ଲଷ୍ଟର ଆନାଲିସିସ । କ୍ଲାସିଫିକେସନ କିମ୍ବା ରିଗ୍ରେସନ କରିବା ପୂର୍ବରୁ ଫିଚର ସିଲେକ୍ସନ ପ୍ରଣାଳୀଦ୍ୱାରା ତଥ୍ୟକୁ ପ୍ରାକ-ପ୍ରକ୍ରିୟାକରଣ କରାଯାଇଥାଏ । ଏଥିରେ ତଥ୍ୟକୁ କର୍ମପଯୋଗୀ କରିବାକୁ ଚେଷ୍ଟା କରାଯାଏ, ଯାହାକି ପରେ ଅସଲି ତାଲିମ ସମୟରେ ଭଲରେ କାମରେ ଆସିବ ।

ଏହା ଉଭୟ ସୁପରଭାଇଜଡ଼ ଏବଂ ଅନ-ସୁପରଭାଇଜଡ଼ ହୋଇପାରେ ।ସୁପରଭାଇଜଡ଼ ଫିଚର ଲର୍ଣ୍ଣିଙ୍ଗରେ ପୂର୍ବ ନିର୍ଦ୍ଧାରିତ ଚିନ୍ହିତ ତଥ୍ୟ ଉପଯୋଗ କରାଯାଇଥାଏ । କେତେକ ଉଦାହରଣ ହେଲା: ଆର୍ଟିଫିସିଆଲ ନ୍ୟୂରାଲ ନେଟୱର୍କ, ମଲ୍ଟିଲେୟାର ପରସେପଟ୍ରନ ଏବଂ ସୁପରଭାଇଜଡ଼ ଡିକ୍ସନାରୀ ଲର୍ଣ୍ଣିଙ୍ଗ । ଅନ୍ୟପକ୍ଷରେ ଅନ-ସୁପରଭାଇଜଡ଼ ଲର୍ଣ୍ଣିଙ୍ଗରେ ବିନା କୌଣସି ଚିନ୍ହିତ ତଥ୍ୟରେ ଫିଚର ନିରୂପଣ ହୋଇଥାଏ । ଉଦାହରଣ ସ୍ୱରୂପ: ଇଂଡିପେଣ୍ଡେଣ୍ଟ କାମ୍ପୋନେଣ୍ଟ ଆନାଲିସିସ, ଅଟୋଏନକୋଡ଼ର, ମାଟ୍ରିକ୍ସ ଫାକ୍ଟୋରାଇଜେସନ ଏବଂ କ୍ଲଷ୍ଟରିଂର ବିଭନ୍ନ ପ୍ରକାର ।[୨୦][୨୧]

ପ୍ରୟୋଗସମ୍ପାଦନ କରନ୍ତୁ

ମେସିନ ଲର୍ଣ୍ଣିଙ୍ଗର ପ୍ରୟୋଗ ବିଭିନ୍ନ ସ୍ଥାନରେ କରାଯାଉଛି । କିଛି ଉଦାହରଣ ନିମ୍ନରେ ଦିଆହେଲା:[୨୨]

  • କୃଷି [୨୩]
  • ନ୍ୟାଚୁରାଲ ଲାଙ୍ଗୁଏଜ ପ୍ରୋସେସିଂ
  • ନ୍ୟାଚୁରାଲ ଲାଙ୍ଗୁଏଜ ଜେନେରେସନ
  • ନ୍ୟାଚୁରାଲ ଲାଙ୍ଗୁଏଜ ଅଣ୍ଡରଷ୍ଟାଣ୍ଡିଂ
  • ଜିନିଷ ଦେଖି ଚିନ୍ହିବା
  • ଟେଲିକମ୍ୟୁନିକେସନ
  • ବୀମା
  • ଅନଲାଇନ ବିଜ୍ଞାପନ
  • ସର୍ଚ୍ଚ ଇଞ୍ଜିନ
  • ଭାବ ପ୍ରକ୍ରିୟାକରଣ ବା ସେଣ୍ଟିମେଣ୍ଟ ଆନାଲିସିସ
  • ସ୍ପିଚ ରେକଗନୀସନ
  • ମେସିନ ଟ୍ରାନ୍ସଲେସନ
  • ଟାଇମ ସିରିଜ ଫୋରକାଷ୍ଟିଙ୍ଗ
  • ୟୁଜର ବିହେଭିୟର ଆନାଲିଟିକ୍ସ
  • ଅର୍ଥନୀତି

ଅଧିକ ଜାଣିବା ନିମିତ୍ତ ଦେଖିପାରନ୍ତି: ଆର୍ଟିଫିସିଆଲ ଇଣ୍ଟେଲିଜେନ୍ସର ପ୍ରୟୋଗ

ଆହୁରି ମଧ୍ୟ ଦେଖନ୍ତୁସମ୍ପାଦନ କରନ୍ତୁ

ବାହାର ଆଧାରସମ୍ପାଦନ କରନ୍ତୁ

ଆଧାରସମ୍ପାଦନ କରନ୍ତୁ

  1. https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861
  2. https://www.dummies.com/programming/big-data/data-science/3-types-machine-learning/
  3. https://www.kdnuggets.com/2017/11/3-different-types-machine-learning.html
  4. https://www.dummies.com/programming/big-data/data-science/3-types-machine-learning/
  5. https://towardsdatascience.com/types-of-machine-learning-algorithms-you-should-know-953a08248861
  6. http://qr.ae/TUISZS
  7. ୭.୦ ୭.୧ ୭.୨ https://medium.com/simple-ai/classification-versus-regression-intro-to-machine-learning-5-5566efd4cb83
  8. https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/
  9. https://www.linkedin.com/learning/machine-learning-ai-foundations-clustering-and-association
  10. https://www.quora.com/What-is-the-difference-between-clustering-and-association-rule-mining
  11. https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering/
  12. https://www.quora.com/What-is-the-difference-between-Clustering-and-Classification-in-Machine-Learning
  13. ୧୩.୦ ୧୩.୧ https://stackoverflow.com/a/38841376/5014656
  14. https://www.quora.com/What-are-the-different-types-of-Machine-Learning-Algorithms
  15. https://medium.com/@sifium/machine-learning-types-of-classification-9497bd4f2e14
  16. https://www.reddit.com/r/MachineLearning/comments/15zrpp/please_explain_support_vector_machines_svm_like_i/
  17. https://www.youtube.com/watch?v=3liCbRZPrZA
  18. https://ieeexplore.ieee.org/document/6472238
  19. https://arxiv.org/abs/1206.5538
  20. "Conference on Neural Information Processing Systems", Wikipedia (in ଇଂରାଜୀ), 2018-12-23, retrieved 2019-02-04
  21. http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_CoatesNL11.pdf
  22. https://en.wikipedia.org/wiki/Machine_learning#Applications
  23. http://www.research.ibm.com/articles/precision_agriculture.shtml