ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ
ପାଟିଗଣିତ ତଥା ସଂଖ୍ୟାତତ୍ତ୍ୱରେ ଅନ୍ତତଃ ଦୁଇଟି ପୂର୍ଣ୍ଣାଙ୍କର ( ଯଥା 'କ' ଓ 'ଖ' ) ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ (LCM ବା ଲ. ସା. ଗୁ. )ହେଉଛି ସେହି କ୍ଷୁଦ୍ରତମ ଧନାତ୍ମକ ସଂଖ୍ୟା ଯାହା ଉଭୟ 'କ' ଓ 'ଖ'ଦ୍ୱାରା ବିଭାଜ୍ୟ ।.[୧] ସେହିପରି ଦୁଇରୁ ଅଧିକ ପୂର୍ଣ୍ଣାଙ୍କର ଲ. ସା. ଗୁ. ହେବ ସେହି କ୍ଷୁଦ୍ରତମ ଧନାତ୍ମକ ସଂଖ୍ୟା ଯାହା ନିଆଯାଇଥିବା ପ୍ରତ୍ୟେକ ସଂଖ୍ୟାଦ୍ୱାରା ବିଭାଜ୍ୟ ହେବ ।[୨] ଯେହେତୁ ଶୁନ୍ୟଦ୍ୱାରା ଗାଣିତିକ ବିଭାଜନ ଏକ ଅସମ୍ଭବ ପ୍ରକ୍ରିୟା, ଅଣଶୁନ୍ୟ ସଂଖ୍ୟାମାନଙ୍କର ହିଁ ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ ନିର୍ଣ୍ଣୟ କରାଯାଇପାରିବ ।[୩] ତଥାପି କେତେକ ଗାଣିତିକଙ୍କ ମତରେ 'କ' (ଅନଶୁନ୍ୟ ସଂଖ୍ୟା) ଏବଂ ଶୁନ୍ୟ (୦)ର ଲ. ସା. ଗୁ. ଶୁନ୍ୟ (୦) ହେବ ।
ଗାଣିତିକ ପ୍ରୟୋଗ
ସମ୍ପାଦନାଉଦାହରଣ
ସମ୍ପାଦନାଗୁଣନୀୟକ ପଦ୍ଧତିରେ ୪ ଓ ୬ର ଲସାଗୁ ନିର୍ଣ୍ଣୟ:
୪ର ଗୁଣିତକସବୁ ହେଲା:- ୪, ୮, ୧୨, ୧୬, ୨୦, ୨୪ ...............
୬ର ଗୁଣିତକ ସବୁ ହେଲା:- ୬, ୧୨, ୧୮, ୨୪ .................
ଉଭୟ ମଧ୍ୟରେ ସାଧାରଣ ଗୁଣିତକଗୁଡିକ ହେଲା: ୧୨, ୨୪ .........
ଅତଏବ ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକଟି ହେଉଛି - ୧୨
ଆଧାର
ସମ୍ପାଦନା- ↑ Hardy & Wright, § 5.1, p. 48
- ↑ "Least common multiple (LCM)". Retrieved 11 June 2018.
- ↑ Long (1972, p. 39)
- ↑ "Least common multiple". Retrieved 11 June 2018.
ଏହି ପ୍ରସଙ୍ଗଟି ଅସମ୍ପୂର୍ଣ୍ଣ ଅଟେ । ଆପଣ ଏହାକୁ ସଂପୂର୍ଣ୍ଣ କରି ଉଇକିପିଡ଼ିଆକୁ ସମୃଦ୍ଧ କରିପାରିବେ । |